

Function: The T100 is a Single Level Trip Amplifier from a single process signal input. The trip action can be arranged so that the Alarm condition can be above (High Trip) or below (Low Trip) the set point, and that the relay can be either normally energised to de-energise in the Alarm condition (Fail-Safe), or normally de-energised to energise in the Alarm condition (Non Fail-Safe). The T110 is a T100 with an edgew ise analogue meter in the front panel displaying 0 to 100% of the input span.
Options on the T100/T110 include: a ten-turn set-point potentiometer; a mA retransmitting output; variable hysteresis on the trip relay; an on-board transmitter pow er supply; a difference betw een tw o RTDs input; and a DPDT relay instead of the SPCO relay.

SPECIFICATIONS

Please note that the following are typical ranges. We also manufacture instruments to cater for other ranges, within limitations detailed below. All instruments come with span and zero potentiometers for fine tuning on site.
IN P UTS:

DC Current

0 to 1mA into 1 K ohms 0 to 10 mA into 100 ohms
4 to 20 mA into 62.5 ohms
10 to 50 mA into 25 ohms Other current inputs as required M inimum current $10 \mu \mathrm{~A}$ M aximum current 100 mA

DC Voltage

Betw een 0 and 250 Volts DC Minimum voltage span 5 mV M aximum voltage span 250 V
Input Impedance
1M ohms or greater
Resistance (2 wire)
Between 0 and 10K ohms
Minimum span 10 ohms
M aximum span 10K ohms

Potentiometers (3 wire)
Between 0 and 20K ohms Minimum span 10 ohms M aximum span 20K ohms

Resistance Thermometers

 (RTDs, PT100s)2 or 3 wire, 100 ohms at $0^{\circ} \mathrm{C}$ or 130 ohms at $0^{\circ} \mathrm{C}$
M inimum temperature span $10^{\circ} \mathrm{C}$ M aximum temperature span $600^{\circ} \mathrm{C}$

Thermocouples

Type B, E, J , K, N, R, S \& T Temperatures covered:
Type Range Min Temp Change
B 600 to $1800^{\circ} \mathrm{C} \quad 400^{\circ} \mathrm{C}$
E -260 to $1000^{\circ} \mathrm{C} \quad 65^{\circ} \mathrm{C}$
J -200 to $1200^{\circ} \mathrm{C} \quad 80^{\circ} \mathrm{C}$
$\mathrm{K}-260$ to $1600^{\circ} \mathrm{C} \quad 100^{\circ} \mathrm{C}$
$N \quad 0$ to $1300^{\circ} \mathrm{C} \quad 150^{\circ} \mathrm{C}$
R $\quad 0$ to $2000^{\circ} \mathrm{C} \quad 400^{\circ} \mathrm{C}$
0 to $1800^{\circ} \mathrm{C} \quad 400^{\circ} \mathrm{C}$
T - 260 to $800^{\circ} \mathrm{C} \quad 100^{\circ} \mathrm{C}$
Automatic cold junction
compensation
Open circuit thermocouple monitoring upscale or downscale drive

OUTPUTS

Relay - Contacts

One SPCO relay contact

Contact Ratings

M aximum Current 2A
M aximum Voltage 250 Volt Maximum Load 60W 500VA
Switching Differential
0.5% of span approx, adjustable if required

Switching Mode

Relays energises or de-energises on rising or falling signal as specified

Set Point Dial

270 pot calibrated 0 to 100 , fitted with locking cursor
Options:

1) Ten turn locking potentiometer
2) Remote potentiometer

Relay State Indication
Bi-colour red/green LED
Green $=$ Stable State
Red $=$ Alarm State

SUPPLY:

Pow er Supplies

100 to 120 Volt $50 / 60 \mathrm{~Hz}$ 200 to 240 Volt $50 / 60 \mathrm{~Hz}$ or 24 Volt DC with converter to maintain signal to power supply isolation

Power Required

3 Watts M aximum
GENERAL:

Temperature Coefficient

$\pm 0.1 \%$ of span/ $\triangle 10^{\circ} \mathrm{C}$
(for inputs > 100 mV) + Cold junction error, for thermocouple inputs
Operating Temperature Range 0 to $+50^{\circ} \mathrm{C}$

Storage Temperature Range
-20 to $+85^{\circ} \mathrm{C}$
Operating Humidity Range
0 to 95% RH non-condensing
Storage Humidity Range
0 to 95\% RH non-condensing

Weight

T100 315 gms
T110 340 gms

MECHANICALDETAILS

TERM INATION DETAILS
Termination details are dependent upon input type and upon type of housing chosen (19" rack or DIN rail mounting enclosure) and, if 19" rack, screw terminals or solder terminals. Further details upon request from our internal sales department.

ORDERING DETAILS
(a) Give identification code, i.e.T100
(b) Give power supply voltage, i.e. 240 Volt 60 Hz
(c) Give details of input signal i.e. Chromel/Alumel thermocouple, span 0 to $250^{\circ} \mathrm{C}$.
(If thermocouple input please specify upscale or downscale burnout drive)
(d) Give details of trip action required: i.e.

- HNF = High Non Fail Safe - LFS = Low Fail Safe
- HFS = High Fail Safe - LNF = Low Non Fail Safe
$H=\quad$ High Trip $=\quad$ Alarm condition above the set point
$\mathrm{L}=$ Low Trip $=\quad$ Alarm condition below the set point

FS = Fail Safe $=$ Relay normally energised to de-energise in the alarm condition
NF $=\quad$ Non Fail Safe $=$

Relay normally de-energised to energise in the alarm condition

